Gate-Level Minimization

Jee-Hwan Ryu

School of Mechanical Engineering
Korea University of Technology and Education

Gate-Level Minimization – The Map Method

- Truth table is unique
- Many different algebraic expression
- Boolean expressions may be simplified by algebraic means
- But, awkward due to the lack of specific rules
- Karnaugh Map or K-map method
 - Pictorial form of truth table
 - A simple and straightforward procedure
Why Need to be Simple?

- Produces a circuit diagram with a minimum number of gates and the minimum number of inputs to the gate
- Simplest expression is not unique

Two-Variable Map

Fig. 3-1 Two-variable Map

$$m_1 + m_2 + m_3 = x'y' + xy' + xy = x + y$$
Three-Variable Map

Not in a binary sequence, but in a sequence similar to Gray code

\[m_5 + m_7 = xy'z' + xyz = xz(y + y') = xz \]
\[m_0 + m_2 = x'y'z' + x'yz' = x'z' + y = x'z' \]

Examples

Ex 3-1) Simplify the Boolean function, \(F(x, y, z) = \Sigma(2, 3, 4, 5) \)

\[F = x'y + xy' \]

Ex 3-4) Simplify the Boolean Function, \(F(x, y, z) = \Sigma(0, 2, 4, 5, 6) \)

\[F = z' + xy' \]
Example

Ex 3–4) Given Boolean function, \(F = A'C + A'B + AB'C + BC \)

a) express it in sum of minterms
\[
F(x, y, z) = \Sigma(1, 2, 3, 5, 7)
\]

b) find the minimal sum of products
\[
F = C + A'B
\]

![Map for Example 3-4](image)

Fig. 3-7 Map for Example 3-4; \(A'C + A'B + AB'C + BC = C + A'B \)

Four-Variable Map

Ex 3–5) Simplify the Boolean function,
\[
F(w, x, y, z) = \Sigma(0, 1, 2, 4, 5, 6, 8, 9, 12, 13, 14)
\]

\[
F = y' + w'z' + xz'
\]

![Four-variable Map](image)

Fig. 3-8 Four-variable Map

![Map for Example 3-5](image)

Fig. 3-9 Map for Example 3-5; \(F(w, x, y, z) = \Sigma(0, 1, 2, 4, 5, 6, 8, 9, 12, 13, 14) = y' + w'z' + xz' \)
Examples

1. Simplify the Boolean function
 \[F(x, y, z) = \Sigma(3, 4, 6, 7) \]
 \[yz + xz' \]

2. Simplify the Boolean function
 \[F(x, y, z) = \Sigma(0, 2, 4, 5, 6) \]
 \[z' + xy' \]

Prime Implicants

A **Prime Implicant** is a product term obtained by combining the maximum possible number of adjacent squares in the map.

\[F(A,B,C,D) = \Sigma(0,2,3,5,7,8,9,10,11,13,15) \]

\[F = BD + B'D' + CD + AD \]
\[= BD + B'D' + CD + AB' \]
\[= BD + B'D' + B'C + AD \]
\[= BD + B'D' + B'C + AB' \]

![Prime Implicants Diagram](image-url)
Ex 3–7) Simplify the Boolean function,
\[F(A,B,C,D,E) = \Sigma(0,2,4,6,9,13,21,23,25,29,31) \]
\[F = A'B'E' + BD'E + ACE \]
Examples

1. Simplify the following Boolean functions by first finding the essential prime implicants:

 \[F(A,B,C,D) = \Sigma(0,2,3,5,7,8,10,11,14,15) \]

 i) find the essential prime implicants \(CD + B'D' \)

 ii) find the non essential prime implicants \(AC + A'BD \)

 iii) simplify function \(F = CD + B'D' + AC + A'BD \)

2. Simplify the following Boolean functions, using five-variable maps:

 \[F(A,B,C,D,E) = \Sigma(0,1,4,5,16,17,21,25,29) \]

 Ans) \(A'B'D' + B'C'D' + AD'E \)

Product of Sums Simplification

Ex 3–8) Simplify the Boolean function,

\[F(A, B, C, D) = \Sigma(0, 1, 2, 5, 8, 9, 10) \]

 a) sum of products

 \[F = B'D' + B'C' + A'C'D \]

 b) product of sum

 \[F' = AB + CD + BD' \]

 \[F = (A' + B')(C' + D')(B' + D) \]

Fig. 3-14 Map for Example 3-8: \(F(A,B,C,D) = \Sigma(0,1,2,5,8,9,10) \)

\[= B'D' + B'C' + A'C'D = (A' + B')(C' + D')(B' + D) \]

(b) \[F = (A' + B')(C' + D')(B' + D) \]

Fig. 3-15 Gate Implementation of the Function of Example 3-8
Product of Sums Simplification

\[F(x, y, z) = \Sigma(1, 3, 4, 6) = \Pi(0, 2, 5, 7) \]
\[F = x'z + xz' \]
\[F' = xz + x'z' \]
\[F = (x'+z')(x + z) \]

Examples

Simplify the following Boolean functions in product of sums:

1. \(F(w, x, y, z) = \Sigma(0, 2, 5, 6, 7, 8, 10) \)
 \[\text{Ans) } (w'+x')(x+z')(x'+y+z) \]

2. \(F(A, B, C, D) = \Pi(1,3,5,7,13,15) \)
 \[\text{Ans}) (B'+D')(A+D') \]
Ex 3–9) Simplify the Boolean function, \(F(w, x, y, z) = \Sigma(1, 3, 7, 11, 15) \)
Don’t-care conditions, \(d(w, x, y, z) = \Sigma(0, 2, 5) \)

\[
F(w, x, y, z) = yz + w'x' = \Sigma(0, 1, 2, 3, 7, 11, 15) \\
F(w, x, y, z) = yz + w'z = \Sigma(1, 3, 5, 7, 11, 15)
\]

NAND and NOR Implementation

- Digital circuits are frequently constructed with NAND or NOR gates rather than AND and OR gates
- NAND and NOR gates are easier to fabricate with electronic components
- Basic gates used in all IC digital logic families
NAND Circuits

- NAND Circuit

NAND gate is a universal gate

Ex 3-10) Implement the following Boolean function with NAND gates:

\[F(x, y, z) = \Sigma(1, 2, 3, 4, 5, 7) = xy' + x'y + z \]

Two-Level Implementation

\[F = ((AB)'(CD)')' = AB + CD \]

Ex 3-10) Implement the following Boolean function with NAND gates:

\[F(x, y, z) = \Sigma(1, 2, 3, 4, 5, 7) = xy' + x'y + z \]
Multilevel NAND Circuits

- Convert all AND to NAND with NAND–inverter
- Convert all OR to NAND with inverter–NAND
- Check all the inverter in the diagram. For every inverter that is not compensated by another circle along the same line, insert an inverter (one-input NAND gate) or complement the input literal

Example—Multilevel NAND Circuits

Fig. 3-22 Implementing $F = A(CD + B) + BC'$
Example—Multilevel NAND Circuits

\[F = (AB' + A'B)(C + D') \]

(a) AND-OR gates

(b) NAND gates

NOR Implementation

(a) OR–invert

(b) Invert–AND

Fig. 3-25 Two Graphic Symbols for NOR Gate
NOR Operation is the Dual of the NAND

- OR gates to NOR gates with NOR–invert
- AND gates to NOR gates with invert–NOR
- Any Inverter that is not compensated by another inverter along the same line needs an inverter or the complementation of the input literal

Example

\[F = (AB' + A'B)(C + D') \]

Fig. 3-27 Implementing \(F = (AB' + A'B)(C + D') \) with NOR Gates
Exclusive-OR Function

\[\text{XOR} : x \oplus y = xy' + x'y \]
\[\text{XNOR} : (x \oplus y)' = xy + x'y' \]

\[x \oplus 0 = x \]
\[x \oplus 1 = x' \]
\[x \oplus x = 0 \]
\[x \oplus x' = 1 \]
\[x \oplus y' = x' \oplus y = (x \oplus y)' \]

Fig. 3-32 Exclusive-OR Implementations

Parity Generation and Checking

Table 3-4: Even-Parity-Generator Truth Table

<table>
<thead>
<tr>
<th>Three-Bit Message</th>
<th>Parity Bit</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x)</td>
<td>(y)</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

(a) 3-bit even parity generator

Table 3-5: Even-Parity-Checker Truth Table

<table>
<thead>
<tr>
<th>Four Bits Received</th>
<th>Parity Check</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x)</td>
<td>(y)</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

(a) 4-bit even parity checker

Fig. 3-36 Logic Diagram of a Parity Generator and Checker
HDL (Hardware Description Language)

// HDL Example 3-1
// Description of the simple circuit of Fig. 3-37
module smpl_circuit(A, B, C, x, y);
 input A, B, C;
 output x, y;
 wire e;
 and g1(e, A, B);
 not g2(y, C);
 or g3(x, e, y);
endmodule