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Control Objectives of Bilateral Control

1. Ideal response



Two Aspects Iin Control of Teleoperator

e Performance

— Make the operator feel as if he/she directly interact with
the remote environment

o Stability
— Endure stable operation under wide variety of operating
conditions



ldeal Teleoperator [Hannaford, 1989]

The hybrid two-port network model of teleoperator
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Transparency [Lawrence, 1993
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The essential desire is to provide a faithful transmission of signals (positions,
velocities, forces) between master and slave to couple the operator as closely as
possible to the remote task.
Ideally, the teleoperation system would be completely transparent, so operators
feel that they are directly interacting with the remote task.



ldeal response : ideal kinesthetic coupling

[Yokokohiji, 1994]

» Ideal response | : the position responses by the operator’s input are
identical, whatever the object dynamics is.

Xy = X,

» Ideal response Il : the force responses by the operator’s input are
identical, whatever the object dynamics is.

f =T,

» ldeal response 111 : both the position responses and the force responses
by the operator’s input are identical respectively, whatever the object
dynamics is.



Arbitrarily position/force scaling [ryu, 1999]

Xs = A X
At =1,



Position/Force Matching vs. Impedance
Matching

Position/Force matching
XS — Xm
fS — fm

Impedance matching
L, =7,
Position/Force matching —» Impedance matching

Position/Force matching §4 Impedance matching



Characteristics on Scaling
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Architectures of Bilateral Control

P/P

P/F

FIF

PF/PF

Local Force Feedback
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General Bilateral Control Architecture
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Use all 4 information for control



General Structure 4-channel
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Position/Position Architecture
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Position/Position Architecture
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Position/Force Architecture

Operator Master Slave Environment
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Position/Force Architecture
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General Structure (4-channel)

Operator
Master
Communication
| J Channel
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Position-position architecture :

C,#0,C, #0,C,=C, =0
C.=C,=0

Position-force architecture :
C,#0C,#0C,=C,=0
C.,=C,=0

Force-position architecture :
C,#0,C,#0,C, =C, =0
C.=C,=0

Force-force architecture :
C,#0C,#0,C, =C, =0
C.=C,=0



Comparing of the Architectures

The transmitted impedance to the operator

A+CZ,
Z, =
B+ DZ,

where
A=(z_+C_)z,+C,)+CC,

B= (1+C6)(Zs +Cs)_C3C4
C=@+cC.)z,+C,)+CC,

D=(1+C.)1+C,)-C,C,



Position-Position Architecture

(Zm +Cm )(Zs +Cs)_CmCs +(Zm +Cm )Ze

7 =
t (z,+C,)+Z,
Z +C_ — Cus Cr
h— +C,. Z,+C,
B - C, 1
i Z, +C, ZS+CS_

If C.,C, goes to infinite

s o CCo
h = Z. +C,

-1 0




Position-Force Architecture
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Transparency optimized control law with
four-channel

C, :(Zs +Cs) C,C; =1
Cs=C4 =0 C4:_(Zm+Cm)



With local force feedback [H-Zaad, 1999]

C,=(z,+c,) C,=1+C,
C,=1+C, c,=—(z, +C_)
0 1

= Zt:Ze h: 1 O

Increase stability margin for the time delay teleoperation,
because the feed-forward control gain c,,cC,
can be attenuated by the local force feedback gain C,,C

However, acceleration should be measured and the
dynamic parameters of the master and slave should be
known, perfectly.
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Teleoperator two-port should be passive

[ (1 Wae)- (W) 20,

vVi>0



Human
Operator

Haptic
Interface

Virtual
Environment

Virtual Environment one-port should be passive

j; f.(cv,(r)dz >0,

vVi>0



Passivity

 Principle of conservation of energy:

— “Energy supplied BY the network can never exceed the
energy which has been fed TO 1t”

 Mathematical definitions

Net energy supplied Initial energy storage
Vv

—

f : Force f-v>0 ‘fﬁ
V : Velocity f-v<0 @@ -




Energy Behavior of Spring

Energy (Nmm)
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Virtual Coupling




Passivity Observer (PO) can measure energy
flow In real-time

Passivity :
j; f(rv(r)dz >0, Vt=>0
PO : Eqy(n)=AT 3 f(k(k) v,
k=0 B Eobsv (n) o+—
E...(n)>0 :Passive - fo__ N

E,..(n)<0 :Active
-Hannaford and Ryu 2001-



Passivity Controller (PC) is an adaptive

dissipation element

Series PC
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-Hannaford and Ryu 2001-



Series PC Algorithm

1) v,(n)=v,(n)is an input
2) fz(n): Fy (Vz (n))
where F,( ) is the output of the one-port
3) Eobsv(n) = Eobsv(n _l)+ | fz (n)Vz (n)"' a(n _l)Vz (n _l)Z]AT

~E,.,(N)/AT v,(n)* if E, (n)<0
4) a()=y : ’
0 E,..(n)=>0
5) fi(n)=f,(n)+a(n)v,(n) = output Series PC
LY S — T
f f, N

-Hannaford and Ryu 2001-



Simple Simulation with Impedance

Type Virtual Wall

k k=710 N/m

W b =50 Ns/m
f(t)
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Excalibur Haptic Interface System




Haptic Experiment with the PC




Teleoperation Experiment with the PC




